Indexed by:
Abstract:
Despite the success of deep neural networks in medical image classification, the problem remains challenging as data annotation is time-consuming, and the class distribution is imbalanced due to the relative scarcity of diseases. To address this problem, we propose Class-Specific Distribution Alignment (CSDA), a semi-supervised learning framework based on self-training that is suitable to learn from highly imbalanced datasets. Specifically, we first provide a new perspective to distribution alignment by considering the process as a change of basis in the vector space spanned by marginal predictions, and then derive CSDA to capture class-dependent marginal predictions on both labeled and unlabeled data, in order to avoid the bias towards majority classes. Furthermore, we propose a Variable Condition Queue (VCQ) module to maintain a proportionately balanced number of unlabeled samples for each class. Experiments on three public datasets HAM10000, CheXpert and Kvasir show that our method provides competitive performance on semi-supervised skin disease, thoracic disease, and endoscopic image classification tasks. © 2023 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Computers in Biology and Medicine
ISSN: 0010-4825
Year: 2023
Volume: 164
7 . 0
JCR@2023
7 . 0 0 0
JCR@2023
ESI HC Threshold:32
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: