Indexed by:
Abstract:
Spatial range query enjoys widespread application scenarios due to the ever-growing geo-positioning technology in recent years. Huge amounts of encrypted geo-location data are being outsourced to cloud servers to alleviate local storage and computational overheads without leaking sensitive information. However, most existing Privacy-preserving Spatial Range Query (PSRQ) cannot achieve high efficiency while satisfying strong security over large-scale encrypted spatial data. To strike a best-possible balance between security and efficiency, we propose a novel efficient Privacy-preserving Spatial Range Query (ePSRQ) scheme in dual-cloud architecture over large-scale dataset. Specifically, we propose an efficient PSRQ scheme by designing a novel index structure based on Geohash algorithm, Circular Shift and Coalesce Zero-Sum Garbled Bloom Filter (CSC-ZGBF) and Symmetric Homomorphic Encryption (SHE), which makes the computational complexity of query process independent of dataset size. Formal security analysis proves that our scheme can achieve Indistinguishability against Chosen-Plaintext Attack (IND-CPA), and extensive experiments prove that our scheme is feasible in real-world applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS
ISSN: 1063-6927
Year: 2023
Page: 271-281
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1