• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Xiao, J. (Xiao, J..) [1] | Zhu, T. (Zhu, T..) [2] | Li, L. (Li, L..) [3] | Shen, L. (Shen, L..) [4] | Ren, Z. (Ren, Z..) [5] | Xu, J. (Xu, J..) [6]

Indexed by:

Scopus

Abstract:

In recent years, the incidence rate of lumbar diseases has been progressively increasing. The conventional lumbar fusion cages used in existing lumbar interbody fusion surgery are not able to take into account the multiple characteristics of cushioning, vibration reduction, support, cell adhesion, and bone tissue growth. Therefore, in this work, based on the CT data of a lumbar intervertebral disc plain scan, a combined symmetric lumbar fusion cage structure was innovatively designed. The core was made of lightweight TC4 medical titanium alloy flexible microporous metal rubber (LTA-FMP MR), and the outer frame was made of cobalt–chromium–molybdenum alloy. Its comprehensive biomechanical performance was comprehensively evaluated through finite element simulation, static and dynamic mechanics, and impact resistance tests. The three-dimensional model of the L3/L4 lumbar segment was established by reverse engineering, and a Mises stress analysis was conducted on the lumbar fusion cage by importing it into Ansys to understand its structural advantages compared to the traditional lumbar fusion cage. Through static experiments, the influence of the internal nucleus of a symmetrical lumbar fusion cage with different material parameters on its static performance was explored. At the same time, to further explore the superior characteristics of this symmetrical structure in complex human environments, a biomechanical test platform was established to analyze its biomechanical performance under sinusoidal excitation of different amplitudes and frequencies, as well as impact loads of different amplitudes and pulse widths. The results show that under different amplitudes and frequencies, the lumbar fusion cage with a symmetrical structure has a small loss factor, a high impact isolation coefficient, and a maximum energy consumption of 422.8 N·mm, with a maximum kinetic energy attenuation rate of 0.43. Compared to existing traditional lumbar fusion cages in clinical practice, it not only has sufficient stiffness, but also has good vibration damping, support, and impact resistance performance, and has a lower probability of postoperative settlement, which has broad application prospects. © 2023 by the authors.

Keyword:

biomechanics dynamic performance impact resistance metal rubber symmetrical lumbar fusion cage

Community:

  • [ 1 ] [Xiao J.]Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
  • [ 2 ] [Xiao J.]University of Chinese Academy of Sciences, Beijing, 100049, China
  • [ 3 ] [Zhu T.]Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
  • [ 4 ] [Zhu T.]School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 5 ] [Li L.]School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 6 ] [Shen L.]Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
  • [ 7 ] [Shen L.]State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
  • [ 8 ] [Ren Z.]School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 9 ] [Xu J.]Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
  • [ 10 ] [Xu J.]State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Symmetry

ISSN: 2073-8994

Year: 2023

Issue: 10

Volume: 15

2 . 1 4 3

JCR@2018

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:104/10052690
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1