Indexed by:
Abstract:
城市区域建筑类型信息在城市功能区识别、城市环境变量反演等应用领域具有重要作用。本文提出一种融合高分辨率遥感影像高度特征的多尺度城市建筑类型分类方法。首先利用语义分割模型识别高分辨影像中建筑和阴影对象;然后借助建筑对象及其阴影信息在卫星成像时的几何关系估算建筑高度;最后基于多尺度图像分析思想,提取一系列表征建筑对象的高度、空间结构、几何等多尺度特征,利用机器学习方法进行建筑类型分类,并进一步分析不同粒度的建筑类型分析单元对分类结果的影响。选取福州市主城区国产高分二号高分辨率影像进行实验验证。结果表明:(1)基于所提方法的建筑类型分类总体精度达到82.98%,kappa系数为0.77,分类精度优于本文中未加入高度信息的分类方法和单一尺度分类方法;(2)引入高度特征有效提高了中低层居民楼和高层商住两用建筑类型的分类精度,较未加入高度特征的分类结果,总体精度提高了11.28%;(3)融合多个尺度的图像特征可有效减少粘连建筑误分为密集型建筑的情况,较单一尺度分类方法,总体精度提高了2.77%。在精细的数字表面模型数据缺失下,利用高分辨影像阴影信息可为建筑物高度估计提供一种有效的策略,提高城市建筑类型分类精度。此外,融合多粒度图像特征可提升城市区域复杂建筑类型的表征能力,进而提高分类精度。
Keyword:
Reprint 's Address:
Email:
Source :
地球信息科学学报
Year: 2021
Issue: 11
Volume: 23
Page: 2073-2085
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: