Indexed by:
Abstract:
在大数据时代,正则化(惩罚)回归模型成为高维数据分析的一种有效分析工具.文中从统计模型理论和优化算法两个角度对正则化回归模型进行简要的概述,主要介绍线性回归模型、广义线性模型和分位数回归模型三种经典且重要的回归模型以及相应的正则项.对于线性回归模型,介绍最小二乘回归和l_1-正则最小二乘回归问题的优化算法;对广义线性模型和分位数回归模型,介绍逻辑回归模型和求解l_1-正则逻辑回归问题的优化算法,并展示分位数回归模型和求解相应的正则化分位数回归模型的优化算法.最后,对正则化回归模型未来的研究方向进行展望.
Keyword:
Reprint 's Address:
Email:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2021
Issue: 05
Volume: 49
Page: 638-654
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: