Abstract:
文章研究和分析了数据流上的K-median聚类算法技术,包括:(1)流模型和K-median问题定义;(2)基于流的K-median聚类基本决策和内在机理;(3)理论上有性能保证的流算法。对于每一特征,这种技术能在没有实际保留任何数据流对象的情形下有效地确定聚类点。它通过一个聚类块的一分为二或相邻聚类块的合二为一来动态地生成聚类点,从而实现上述目标。作为结果,这种技术所确定的聚类点将比其他常规方法更准确。在数据流环境中,这种技术能够在产生高质量聚类结果的同时非常有效地执行。
Keyword:
Reprint 's Address:
Email:
Source :
Year: 2006
Language: Chinese
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1