Indexed by:
Abstract:
This paper presents a mathematical model for the analysis of axially-loaded end-bearing piles embedded in a two-layer elastic soil deposit. The governing equations of the soil layers surrounding the pile are cast by means of a Tajimi-type continuum formulation, and this allows deriving a closed-form expression that provides the frictional stresses that develop at the soil-pile interface. The pile is treated as two virtual one-dimensional elastic rods, and pile displacements are obtained by solving a system of linear equations that results from considering the boundary and continuity conditions. This results in improved efficiency compared to existing Tajimi-based solutions for piles in layered soil, at no expense of accuracy. The model is used to study the effect of the relative stiffness of the soil layers on the serviceability behavior of axially-loaded piles, and drawn conclusions of practical importance.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
ISSN: 0363-9061
Year: 2023
Issue: 3
Volume: 48
Page: 837-852
3 . 4
JCR@2023
3 . 4 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: