Indexed by:
Abstract:
X-ray imaging plays an increasingly crucial role in clinical radiography, industrial inspection, and military applications. However, current X-ray imaging technologies have difficulty in protecting against information leakage caused by brute force attacks via trial-and-error. Here high-confidentiality X-ray imaging encryption by fabricating ultralong radioluminescence memory films composed of lanthanide-activated nanoscintillators (NaLuF4: Gd3+ or Ce3+) with imperceptible purely-ultraviolet (UV) emission is reported. Mechanistic investigations unveil that ultralong X-ray memory is attributed to the long-lived trapping of thermalized charge carriers within Frenkel defect states and subsequent slow release in the form of imperceptible radioluminescence. The encrypted X-ray imaging can be securely stored in the memory film for more than 7 days and optically decoded by perovskite nanocrystal. Importantly, this encryption strategy can protect X-ray imaging information against brute force trial-and-error attacks through the perception of lifetime change in the persistent radioluminescence. It is further demonstrated that the as-fabricated flexible memory film enables achieving of 3D X-ray imaging encryption of curved objects with a high spatial resolution of 20 lp/mm and excellent recyclability. This study provides valuable insights into the fundamental understanding of X-ray-to-UV conversion in nanocrystal lattices and opens up a new avenue toward the development of high-confidential 3D X-ray imaging encryption technologies. Existing X-ray imaging technologies have difficulty in protecting against information leakage from brute force attacks through trial and error. In this study, high-confidential 3D X-ray imaging encryption is achieved by fabricating ultralong imperceptible radioluminescence memory films.image
Keyword:
Reprint 's Address:
Version:
Source :
ADVANCED MATERIALS
ISSN: 0935-9648
Year: 2023
Issue: 52
Volume: 35
2 7 . 4
JCR@2023
2 7 . 4 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: