• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhou, S. (Zhou, S..) [1] | Zhu, M. (Zhu, M..) [2] | Lin, J. (Lin, J..) [3] | Ipoum-Ngome, P.G. (Ipoum-Ngome, P.G..) [4] | Mon-Nzongo, D.L. (Mon-Nzongo, D.L..) [5] | Jin, T. (Jin, T..) [6] (Scholars:金涛)

Indexed by:

Scopus

Abstract:

This paper proposes a discrete space vector modulation and optimized switching sequence model predictive controller for three-level neutral-point-clamped inverters in grid-connected applications. The proposed strategy is based on cascaded model predictive control (MPC) for controlling the grid current while maintaining the capacitor voltage balanced without weighting factor. To enhance the closed-loop performance, the external MPC evaluates 19 basic and 138 virtual vectors (VV) of the proposed space vector method. The optimal control voltage is then selected using an extended deadbeat method to reduce the execution time of the proposed control algorithm. By using the discrete space vector modulation principle, the VV are synthesized based on switching sequence (SS) and are divided into negative and positive SSs considering their impact on the neutral point (NP) potential. The inner MPC evaluates both types of SSs and selects the one that keeps the capacitor voltage balanced. Various controllers are evaluated and compared against the proposed control strategy. The results show that the proposed strategy improves performance without weighting factor, while maintaining a total harmonic distortion of current to be less than 2%. Compared to the modulated MPC which provides the same fixed switching frequency, the proposed controller reduces the computational burden by over 50% while also providing better NP voltage balance accuracy. © 2023, The Author(s).

Keyword:

Discrete space vector modulation (DSVM) Fixed switching frequency Model predictive control (MPC) Optimal switching sequence (OSS) Three-level inverter

Community:

  • [ 1 ] [Zhou S.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 2 ] [Zhou S.]State Grid Fujian Electric Power Co., LTD, Fuzhou, 350001, China
  • [ 3 ] [Zhu M.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 4 ] [Lin J.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 5 ] [Lin J.]Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou, 350116, China
  • [ 6 ] [Ipoum-Ngome P.G.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 7 ] [Mon-Nzongo D.L.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 8 ] [Jin T.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 9 ] [Jin T.]Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou, 350116, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Protection and Control of Modern Power Systems

ISSN: 2367-2617

Year: 2023

Issue: 1

Volume: 8

8 . 7

JCR@2023

8 . 7 0 0

JCR@2023

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 7

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Affiliated Colleges:

Online/Total:85/10816662
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1