Indexed by:
Abstract:
Near-field underwater explosion produces complex loading patterns, and complex boundary conditions make the damage patterns of structures under near-field underwater explosion more difficult to predict. Thus, the investigation on the evolution of underwater explosion bubbles and the damage effects on the clamped square plates with the coupling of multiboundary (free surface, elastoplastic plates and sediment boundary) was conducted using the coupled Eulerian-Lagrangian (CEL) method. Firstly, to verify the accuracy of the finite element method, underwater explosion tests were performed 10 cm under the bottom of the clamped square plates in different dimensions (the side lengths of the plates were 0.46, 0.92 and 1.61 times the maximum bubble diameter) using 2.5 g TNT. Then, the damage mechanism of the clamped square plates was analyzed by combining the test and finite element results. Finally, a series of numerical simulations reveal that with increasing plate dimension and stand-off distance, bubbles show three different evolution modes: collapse, downward jet, and upward jet. With increasing plate dimension, the effects of stand-off distance on the final deformation of the plate center decreases. The sediment boundary can alleviate the bubble shrinkage, make the bubble firstly collapse from the middle to form jets in the opposite direction, and reduce the displacement and strain of the clamped square plates. The sediment boundary has no effects when the bubbles collapse in advance. © 2023 Explosion and Shock Waves. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Explosion and Shock Waves
ISSN: 1001-1455
CN: 51-1148/O3
Year: 2023
Issue: 11
Volume: 43
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: