Indexed by:
Abstract:
Searching for porous materials that can safely store and efficiently separate acetylene (C2H2), a commonly used petrochemical feedstock with highly explosive properties, is a pressing and significant task. Nitrogen-rich porous materials have garnered substantial attention for their ability to interact strongly with acidic C2H2. Herein, we report two novel nitrogen-rich porous organic cages (POCs), namely CPOC-107 and CPOC-203, constructed from the same bowl-shaped tetraformylcalix[4]resorcinarene but different nitrogen-rich imidazolium-based diamine synthons. X-ray crystallographic analysis reveals that CPOC-107 adopts a [2 + 4] lantern-shaped structure, whereas CPOC-203 takes on a [3 + 6] triangular prism shape. Moreover, the cages exhibit large cavity volumes of up to 787 Å3 and high specific surface areas of up to 1202 m2 g−1. Owing to their high surface areas and high nitrogen content, both cages exhibit impressive C2H2 adsorption capabilities. Specifically, CPOC-107 achieves a remarkable C2H2 uptake value of up to 146 cm3 g−1 at 298 K and 1 atm, the highest among those reported for all porous organic materials to date. Moreover, experimental breakthrough tests have confirmed the effective separation of C2H2/CO2 mixtures using the CPOC-107 adsorbent. © 2023 The Royal Society of Chemistry.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Materials Chemistry A
ISSN: 2050-7488
Year: 2023
Issue: 46
Volume: 11
Page: 25316-25321
1 0 . 8
JCR@2023
1 0 . 8 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: