• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wang, Yun (Wang, Yun.) [1] | Wei, Wei (Wei, Wei.) [2] | Dai, Xiaohu (Dai, Xiaohu.) [3] | Wu, Lan (Wu, Lan.) [4] | Chen, Xueming (Chen, Xueming.) [5] (Scholars:陈学明) | Ni, Bing-Jie (Ni, Bing-Jie.) [6]

Indexed by:

ESCI Scopus

Abstract:

Producing high-value medium-chain fatty acids (MCFAs) via anaerobic fermentation is an emerging green biotechnology to recover bioenergy from waste-activated sludge (WAS). Electron donor (ED) is a key driver affecting the MCFA production profiles. This study investigated and compared the potential of using ethanol, lactate, and a combination of both as ED supplies (Co-EDs) for enhancing MCFA production during anaerobic WAS fermentation. Adopting ethanol as the sole ED was the optimal strategy to attain the highest MCFA production (3352.7 +/- 564.7 mg of COD/L) and selectivity (20.7%) from WAS. Although lactate dosage promoted WAS degradation, more organics were converted to short-chain fatty acids (SCFAs) rather than MCFAs, resulting in the lowest MCFA production (1034.8 +/- 303.6 mg of COD/L) afterward. Lactate- and Co-EDs-added systems enriched hydrolytic bacteria and SCFA producers to a higher level than the reactor with an ethanol supplement. Nevertheless, the richest abundance of Clostridium_kluyveri, a key MCFA producer, was attained in the ethanol-added system. Further metatranscriptomic analysis mapped all expressed metabolic pathways involved in MCFA production and revealed that no synergistic effect was observed in the Co-ED system. The insufficient electron acceptor (EA) synthesis at the initial stage induced the inefficiency in ED usage for CE, rendering a huge waste of ED (i.e., lactate) via the competitive acrylate pathway. In comparison, the gene abundance related to the CE cycle was the highest in the ethanol system. This study provided useful information and insights for enhancing the MCFA yield by optimizing ED composition from various substrates.

Keyword:

ethanol lactate medium-chain fatty acids metatranscriptomic waste-activated sludge

Community:

  • [ 1 ] [Wang, Yun]Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
  • [ 2 ] [Dai, Xiaohu]Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
  • [ 3 ] [Wei, Wei]Univ Technol Sydney, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
  • [ 4 ] [Wu, Lan]Univ Technol Sydney, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
  • [ 5 ] [Ni, Bing-Jie]Univ Technol Sydney, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
  • [ 6 ] [Chen, Xueming]Fuzhou Univ, Coll Environm & Safety Engn, Fujian Prov Engn Res Ctr Rural Waste Recycling Tec, Fuzhou 350116, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

ACS ES&T ENGINEERING

ISSN: 2690-0645

Year: 2023

Issue: 3

Volume: 4

Page: 650-659

7 . 5

JCR@2023

7 . 5 0 0

JCR@2023

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:1490/13881139
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1