Indexed by:
Abstract:
Satellite videos capture the dynamic changes in a large observed sense, which provides an opportunity to track the object trajectories. However, existing multiple object tracking (MOT) methods require massive video annotations, which is time-consuming and fallible. To alleviate this problem, this article proposes a cross-domain multiple object tracker (CDTrack) to learn knowledge from multiple source domains. First, a cross-domain object detector with multilevel domain alignment is constructed to learn domain-invariant knowledge between remote sensing images and satellite videos. Second, the proposed method adopts a bidirectional teacher-student framework to fuse multiple source domains. Two teacher-student models learn different domain knowledge and teach mutually each other. With mutual learning, the proposed method alleviates the discrepancies between different domains. Finally, a simple weakly supervised Re-IDentification (Re-ID) model is proposed for long-term association. Experimental results on the satellite video datasets demonstrate that the proposed method can achieve great performance without satellite video annotations.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN: 0196-2892
Year: 2023
Volume: 61
7 . 5
JCR@2023
7 . 5 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: