Indexed by:
Abstract:
Highly crystalline carbon nitride polymers have shown great opportunities in overall water photosplitting; however, their mission in light-driven CO2 conversion remains to be explored. In this work, crystalline carbon nitride (CCN) nanosheets of poly triazine imide (PTI) embedded with melon domains are fabricated by KCl/LiCl-mediated polycondensation of dicyandiamide, the surface of which is subsequently deposited with ultrafine WO3 nanoparticles to construct the CCN/WO3 heterostructure with a S-scheme interface. Systematic characterizations have been conducted to reveal the compositions and structures of the S-scheme CCN/WO3 hybrid, featuring strengthened optical capture, enhanced CO2 adsorption and activation, attractive textural properties, as well as spatial separation and directed movement of light-triggered charge carriers. Under mild conditions, the CCN/WO3 catalyst with optimized composition displays a high photocatalytic activity for reducing CO2 to CO in a rate of 23.0 µmol/hr (i.e., 2300 µmol/(hr·g)), which is about 7-fold that of pristine CCN, along with a high CO selectivity of 90.6% against H2 formation. Moreover, it also manifests high stability and fine reusability for the CO2 conversion reaction. The CO2 adsorption and conversion processes on the catalyst are monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), identifying the crucial intermediates of CO2*−, COOH* and CO*, which integrated with the results of performance evaluation proposes the possible CO2 reduction mechanism. © 2023
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Environmental Sciences (China)
ISSN: 1001-0742
Year: 2024
Volume: 140
Page: 103-112
5 . 9 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 80
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: