Indexed by:
Abstract:
In the field of intelligent digital healthcare, Continuous-flow microfluidic biochip (CFMB) has become a research direction of widespread concern. CFMB integrates a large number of microvalves and large-scale microchannel networks into a single chip, enabling efficient execution of various biochemical protocols. However, as the scale of the chip increases, the routing task for CFMB becomes increasingly complex, and traditional manual routing is no longer sufficient to meet the requirements. Therefore, this paper proposes an automatic routing framework for CFMB based on Genetic algorithm (GA) and A* algorithms. Specifically, we adopt a two-stage A* algorithm to design the routing between modules, using the routing results obtained from the A* algorithm as the basis for evaluating the quality of solutions in the GA algorithm. Then, the GA algorithm is used to search for the optimal approximate solution in the solution space. Experimental results show that this method can reduce routing length and minimize routing crossings, thereby improving the parallel transmission speed of reagents on CFMB. This approach provides a feasible solution for large-scale automated routing of CFMB in the field of intelligent digital healthcare. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 0302-9743
Year: 2024
Volume: 14504
Page: 209-223
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: