• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Xu, Q. (Xu, Q..) [1] | Deng, Z. (Deng, Z..) [2] | Zeng, C. (Zeng, C..) [3] | Li, Z. (Li, Z..) [4] | He, B. (He, B..) [5] | Zhang, J. (Zhang, J..) [6]

Indexed by:

Scopus

Abstract:

Autonomous robotic massage holds the potential to alleviate the workload of nurses and improve the quality of healthcare. However, the complexity of the task and the dynamic of the environment present significant challenges for robotic massage. This paper presents a vision-based robotic massage (VBRM) framework that facilitates autonomous robot massaging of the human body while ensuring safe operation in a dynamic environment. The VBRM framework allows the operator to define the massage trajectory by drawing a 2D curve on an RGB image. An interactive trajectory planning method is developed to calculate a 3D massage trajectory from the 2D trajectory. This method accounts for potential movements of the human body and updates the planned trajectory using rigid point cloud registration. Additionally, a hybrid motion/force controller is employed to regulate the motion of the robot’s end-effector, considering the possibility of excessive contact force. The proposed framework enables the operator to adjust the massage trajectory and speed according to their requirements. Real-world experiments are conducted to evaluate the efficacy of the proposed approach. The results demonstrate that the framework enables successful planning and execution of the massage task in a dynamic environment. Furthermore, the operator has the flexibility to set the massage trajectory, speed, and contact force arbitrarily, thereby enhancing human–machine interaction. © The Author(s) 2024.

Keyword:

Interactive trajectory planning Physical robot–environment interaction Robot massage Visual servoing

Community:

  • [ 1 ] [Xu Q.]Department of Mechanical Engineering and Automation, Fuzhou University, Fujian, Fuzhou, China
  • [ 2 ] [Deng Z.]Department of Mechanical Engineering and Automation, Fuzhou University, Fujian, Fuzhou, China
  • [ 3 ] [Zeng C.]TAMS Group, Department of Informatics, University of Hamburg, Hamburg, Germany
  • [ 4 ] [Li Z.]Department of Mechanical Engineering and Automation, Fuzhou University, Fujian, Fuzhou, China
  • [ 5 ] [He B.]Department of Mechanical Engineering and Automation, Fuzhou University, Fujian, Fuzhou, China
  • [ 6 ] [Zhang J.]TAMS Group, Department of Informatics, University of Hamburg, Hamburg, Germany

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Complex and Intelligent Systems

ISSN: 2199-4536

Year: 2024

Issue: 3

Volume: 10

Page: 4397-4407

5 . 0 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:253/10049262
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1