Indexed by:
Abstract:
A nanosheet-like K/Zn/Sn/S metal sulfide (KZTS-NS) was synthesized by a hydrothermal method. The adsorption properties and mechanism of KZTS-NS towards Cs+ was investigated. The results showed that fast adsorption of Cs+ occurred by KZTS-NS with an equilibrium time of only 10 minutes and Cs+ removal rate of 96.50%. The adsorption isotherms were well fitted with the Langmuir model, and the calculated maximum adsorption capacity reached 133.96 mg·g−1, which was higher than other reported adsorbents. The adsorption of Cs+ by KZTS-NS was a spontaneous, endothermic, and entropy-increasing process. KZTS-NS had a good performance on Cs+ adsorption in the pH range of 3-10. The inhibitory effect of coexisting ions on Cs+ adsorption by KZTS-NS followed the sequence of Mg2+>Ca2+>Na+>K+. The removal rates of Cs+ by KZTS-NS in tap water, mineral water, lake water, and seawater were 42.14%, 25.15%, 14.14%, and 4.44%, respectively. The KZTS-NS before and after cesium ion (Cs+) adsorption was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), etc. to reveal the Cs+ adsorption mechanism. Results showed that the nanosheet-like morphology of KZTS-NS remained unchanged before and after adsorption of Cs+. K, Zn, Sn, and S elements were evenly distributed on the surface of KZTS-NS. The XRD characteristic peaks after Cs+ adsorption shifted towards a lower 2θ value, corresponding to an increase in crystal plane spacing. The XPS spectra and quantitative analysis indicated that the adsorption mechanism of KZTS-NS for Cs+ was ion exchange. In summary, KZTS-NS could rapidly and efficiently remove Cs+ from wastewater and showed a great potential for further application. This study provides a technical reference and the basic data supports for the treatment of wastewater containing radioactive Cs+ ions. © 2024 Science Press. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Chinese Journal of Environmental Engineering
ISSN: 1673-9108
CN: 11-5591/X
Year: 2024
Issue: 1
Volume: 18
Page: 1-12
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: