Indexed by:
Abstract:
The efficient production of high-quality scintillators with long radioluminescence afterglow is crucial for high-performance X-ray luminescence extension imaging. However, scaling-up the synthesis of ligand-free scintillators to fabricate large-area X-ray imaging screens for industrial applications remains a challenge. In this study, we report an efficient method to synthesize ligand-free, lanthanide-doped microscintillators by a one-pot reaction via the concentrated hydrothermal method. The as-synthesized microscintillators exhibit prolonged persistent radioluminescence for up to 30 days after X-ray exposure and remain high stability in air or water for more than 18 months without deterioration. Monte Carlo simulations indicate that the size effect is responsible for the excellent afterglow performance of the microscintillators. We employ these high-quality lanthanide-doped microscintillators to fabricate a large-area X-ray imaging detector using a blade-coating method, a spatial resolution of 24.9 lp/mm for X-ray imaging. Our study offers a solution for scaling-up the synthesis of low-cost microscintillators for practical applications.
Keyword:
Reprint 's Address:
Version:
Source :
CHINESE CHEMICAL LETTERS
ISSN: 1001-8417
CN: 11-2710/O6
Year: 2024
Issue: 3
Volume: 35
9 . 4 0 0
JCR@2023
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: