Indexed by:
Abstract:
High-resolution seafloor topography is important in scientific research and marine engineering in regard to marine resource development and environmental protection monitoring. In this study, multi-dimensional comparisons were made between GEBCO_2022, SRTM15_V2.5.5, SRTM30_PLUS, SYNBATH_V1.0, ETOPO_2022, and topo_25.1 in the South China Sea and surrounding waters (SCS). This study has found that ETOPO_2022 had the best overall accuracy and reliability. Based on the results of the model accuracy analysis and by considering the topographic slope, ETOPO_2022, GEBCO_2022, and SRTM15_V2.5.5 were weighted and fused to form a fusion model. The error of the fusion model was 94.80% concentrated in (- 100-100 m). When compared with GEBCO_2022, SRTM15_V2.5.5, SRTM30_PLUS, SYNBATH_V1.0, ETOPO_2022, and topo_25.1, the RMSE was reduced by 2%, 9%, 62%, 15%, 1%, and 73%, respectively. The slope-based weighted fusion method has been shown that it can overcome the limitations of a single data source and provide a reference for timely reconstruction and updating of large-scale seafloor topography.
Keyword:
Reprint 's Address:
Version:
Source :
HELIYON
ISSN: 2405-8440
Year: 2024
Issue: 4
Volume: 10
3 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: