Indexed by:
Abstract:
In the past few decades, tremendous efforts have been made toward understanding the exotic physics emerging from competition between various ordering tendencies in strongly correlated systems. Employing state-of-the-art quantum Monte Carlo simulation, we investigate an interacting SU(N) fermionic model with varying interaction strength and value of N, and we unveil the ground -state phase diagram of the model exhibiting a plethora of exotic phases. For small values of N-namely, N = 2, 3-the ground state is an antiferromagnetic (AFM) phase, whereas in the large -N limit, a staggered valence bond solid (VBS) order is dominant. For intermediate values of N such as N = 4, 5, remarkably, our study reveals that distinct VBS orders appear in the weak and strong coupling regimes. More fantastically, the competition between staggered and columnar VBS ordering tendencies gives rise to a Mott insulating phase without spontaneous symmetry breaking (SSB), existing in a large interacting parameter regime, which is consistent with a gapped quantum spin liquid. Our study not only provides a platform to investigate the fundamental physics of quantum many -body systems-it also offers a novel route toward searching for exotic states of matter such as quantum spin liquid in realistic quantum materials.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
PHYSICAL REVIEW LETTERS
ISSN: 0031-9007
Year: 2024
Issue: 3
Volume: 132
8 . 1 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 1 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: