Indexed by:
Abstract:
CO2 conversion with pure H2O into CH3OH and O-2 driven by solar energy can supply fuels and life-essential substances for extraterrestrial exploration. However, the effective production of CH3OH is significantly challenging. Here we report an organozinc complex/MoS2 heterostructure linked by well-defined zinc-sulfur covalent bonds derived by the structural deformation and intensive coupling of dx 2 - y2(Zn)-p(S) orbitals at the interface, resulting in distinctive charge transfer behaviors and excellent redox capabilities as revealed by experimental characterizations and firstprinciple calculations. The synthesis strategy is further generalized to more organometallic compounds, achieving various heterostructures for CO2 photoreduction. The optimal catalyst delivers a promising CH3OH yield of 2.57 mmol gcat-1 h(-1) and selectivity of more than 99.5%. The reverse water gas shift mechanism is identified for methanol formation. Meanwhile, energy-unfavorable adsorption of methanol on MoS2, where the photogenerated holes accumulate, ensures the selective oxidation of water over methanol.
Keyword:
Reprint 's Address:
Version:
Source :
ACS NANO
ISSN: 1936-0851
Year: 2024
Issue: 15
Volume: 18
Page: 10582-10595
1 5 . 8 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: