• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Huang, H. (Huang, H..) [1] | Tian, G. (Tian, G..) [2] | Chen, C. (Chen, C..) [3]

Indexed by:

Scopus

Abstract:

Three-dimensional (3D) reconstruction of trees has always been a key task in precision forestry management and research. Due to the complex branch morphological structure of trees themselves and the occlusions from tree stems, branches and foliage, it is difficult to recreate a complete three-dimensional tree model from a two-dimensional image by conventional photogrammetric methods. In this study, based on tree images collected by various cameras in different ways, the Neural Radiance Fields (NeRF) method was used for individual tree dense reconstruction and the exported point cloud models are compared with point clouds derived from photogrammetric reconstruction and laser scanning methods. The results show that the NeRF method performs well in individual tree 3D reconstruction, as it has a higher successful reconstruction rate, better reconstruction in the canopy area and requires less images as input. Compared with the photogrammetric dense reconstruction method, NeRF has significant advantages in reconstruction efficiency and is adaptable to complex scenes, but the generated point cloud tend to be noisy and of low resolution. The accuracy of tree structural parameters (tree height and diameter at breast height) extracted from the photogrammetric point cloud is still higher than those derived from the NeRF point cloud. The results of this study illustrate the great potential of the NeRF method for individual tree reconstruction, and it provides new ideas and research directions for 3D reconstruction and visualization of complex forest scenes. © 2024 by the authors.

Keyword:

3D reconstruction 3D tree modeling deep learning individual tree lidar neural radiance field (NeRF) photogrammetry terrestrial laser scanning

Community:

  • [ 1 ] [Huang H.]National Engineering Research Center of Geospatial Information Technology, Fuzhou University, Fuzhou, 350108, China
  • [ 2 ] [Huang H.]Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou, 350108, China
  • [ 3 ] [Huang H.]The Academy of Digital China (Fujian), Fuzhou, 350108, China
  • [ 4 ] [Tian G.]National Engineering Research Center of Geospatial Information Technology, Fuzhou University, Fuzhou, 350108, China
  • [ 5 ] [Tian G.]Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou, 350108, China
  • [ 6 ] [Tian G.]The Academy of Digital China (Fujian), Fuzhou, 350108, China
  • [ 7 ] [Chen C.]National Engineering Research Center of Geospatial Information Technology, Fuzhou University, Fuzhou, 350108, China
  • [ 8 ] [Chen C.]Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou, 350108, China
  • [ 9 ] [Chen C.]The Academy of Digital China (Fujian), Fuzhou, 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Remote Sensing

ISSN: 2072-4292

Year: 2024

Issue: 6

Volume: 16

4 . 2 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:293/10033760
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1