Indexed by:
Abstract:
In recent years, loading antioxidants onto inorganic nanoparticles has attracted increasing interest. However, the existing studies not only have low antioxidant loading efficiency, but also ignore the relationship between structural changes and antioxidant properties before and after antioxidant modification, greatly limiting the improvement of the antioxidant properties of composites and their application scope. In this work, we successfully prepared bis-hindered phenolic antioxidants containing silica hydroxyl groups (Bis-mAO) and loaded them onto silicon dioxide (SiO 2 ) to get the nanocomposites (Bis-mAO-SiO 2 ). The melt blending method further prepared the corresponding polyphenylene sulfide (PPS)/Bis-mAO-SiO 2 composites. The results showed that the higher antioxidant loading and more suitable antioxidant structure made Bis-mAO-SiO 2 possess excellent antioxidant properties. The prepared PPS/Bis-mAO-SiO 2 composites remained stable under high temperatures and oxygen environments. Impressively, the maximum weight loss rate temperature of PPS/Bis-mAO-SiO 2 was increased by 11.60 degrees C compared to that of PPS, and after accelerated thermal oxidation at 220 degrees C for 24 h, the relative intensity ratio between O and C of PPS/Bis-mAO-SiO 2 only increased to 0.086, much lower than 0.132 for PPS. Moreover, the viscosity of PPS/Bis-mAO-SiO 2 only increased by 29.05 % and 88.75 % after accelerated thermal oxidation at 220 degrees C for 12, 24 h. Compared, PPS ' s viscosity increased substantially by 79.22 % and 250.3 %, respectively. This meant that the Bis-mAO-SiO 2 successfully achieved a synergistic integration of high antioxidant properties and thermal stability, implying that the work offered a strategy for fabricating hightemperature resistant antioxidant composites.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2024
Volume: 487
1 3 . 4 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: