Indexed by:
Abstract:
The development of green memorizers with distinct mechanism is significant. In this work, renewable polyphenol ellagic acid (EA) and environmentally friendly calcium were used to construct a unique 3D interpenetrated bio-metal-organic framework (BioMOF), i.e. {[Ca2(EA)3(4H2O)]2H2O}n. Its high chemical stability stems from the twofold interpenetrated (6,3) bi-layers and versatile strong pi-pi stacking interactions. The memorizer FTO/{[Ca2(EA)3(4H2O)]2H2O}n/Ag exhibits good bipolar resistive switching performance with an ON/OFF ratio of 5.40 x 103 and a tolerant temperature of 300 degrees C. In particular, the local conjugated EA ligand and strong pi-pi stacking interactions in the interpenetrated 3D network are responsible for a carrier trapping/de-trapping process, rendering the excellent binary resistive switching performance. This work demonstrates a new way for the construction of green electrons by adopting renewable natural products as organic linkers. Natural product ellagic acid was used to construct a stable 3D BioMOF with twofold interpenetrated (6,3) bi-layers, which was fabricated as a biomemorizer with an ON/OFF ratio of 5.40 x 103 bearing a high working temperature of 300 degrees C.
Keyword:
Reprint 's Address:
Version:
Source :
INORGANIC CHEMISTRY FRONTIERS
ISSN: 2052-1553
Year: 2024
Issue: 10
Volume: 11
Page: 3056-3062
6 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: