Indexed by:
Abstract:
The development of optoelectronics mimicking the functions of the biological nervous system is important to artificial intelligence. This work demonstrates an optoelectronic, artificial, afferent-nerve strategy based on memory-electroluminescence spikes, which can realize multiple action-potentials combination through a single optical channel. The memory-electroluminescence spikes have diverse morphologies due to their history-dependent characteristics and can be used to encode distributed sensor signals. As the key to successful functioning of the optoelectronic, artificial afferent nerve, a driving mode for light-emitting diodes, namely, the non-carrier injection mode, is proposed, allowing it to drive nanoscale light-emitting diodes to generate a memory-electroluminescence spikes that has multiple sub-peaks. Moreover, multiplexing of the spikes can be obtained by using optical signals with different wavelengths, allowing for a large signal bandwidth, and the multiple action-potentials transmission process in afferent nerves can be demonstrated. Finally, sensor-position recognition with the bio-inspired afferent nerve is developed and shown to have a high recognition accuracy of 98.88%. This work demonstrates a strategy for mimicking biological afferent nerves and offers insights into the construction of artificial perception systems. © The Author(s) 2024.
Keyword:
Reprint 's Address:
Email:
Source :
Nature Communications
ISSN: 2041-1723
Year: 2024
Issue: 1
Volume: 15
1 4 . 7 0 0
JCR@2023
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: