• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

柯婧 (柯婧.) [1] | 谢哲勇 (谢哲勇.) [2] | 徐童 (徐童.) [3] | 陈宇豪 (陈宇豪.) [4] | 廖祥文 (廖祥文.) [5] | 陈恩红 (陈恩红.) [6]

Indexed by:

PKU CSCD

Abstract:

随着生成式人工智能技术的发展,许多领域都得到了帮助与发展,但与此同时虚假信息的构建与传播变得更加简单,虚假信息的检测也随之难度增加.先前的工作主要聚焦于语法问题、内容煽动性等方面的特点,利用深度学习模型对虚假新闻内容进行建模.这样的方式不仅缺乏对内容本身的判断,还无法回溯模型的判别原因.针对上述问题提出一种基于大语言模型隐含语义增强的细粒度虚假新闻检测方法.该方法充分挖掘并利用了现有的生成式大语言模型所具有的总结与推理能力,按照主干事件、细粒度次要事件和隐含信息推理的顺序进行层级式推导,逐步判别新闻的真实性.通过分解任务的方式,该方法最大程度发挥了模型的能力,提高了对虚假新闻的捕获能力,同时该方法也具有一定的可解释性,能够为检测提供判别依据.

Keyword:

事件抽取 大语言模型 知识增强 社交媒体 虚假新闻检测

Community:

  • [ 1 ] [陈恩红]中国科学技术大学
  • [ 2 ] [谢哲勇]中国科学技术大学
  • [ 3 ] [柯婧]中国科学技术大学
  • [ 4 ] [陈宇豪]福州大学计算机与大数据学院 福州 350108
  • [ 5 ] [廖祥文]福州大学计算机与大数据学院 福州 350108
  • [ 6 ] [徐童]中国科学技术大学

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

计算机研究与发展

ISSN: 1000-1239

Year: 2024

Issue: 5

Volume: 61

Page: 1250-1260

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:3313/11009590
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1