Indexed by:
Abstract:
The architectural design and fabrication of low-cost, high-performance organic scintillators are critical for medical imaging and material/device analysis. However, achieving large-area and high-transparency organic scintillators in a low-cost and easy-to-implement method remains a challenge. Herein, a new design strategy for regulating the side chain length of maleimide derivatives is demonstrated to develop organic scintillators for achieving low-cost, large-area, and high spatial resolution in X-ray imaging. The effective intermolecular interactions and relatively twisted molecular structure endow PAM-M4 molecule with outstanding scintillator properties. More importantly, as demonstrated for the first time, pure organic glassy films with a diameter over 10 cm and high optical transparency can be prepared by the developed melt-quenched method using PAM-M4 crystal powder as a raw material. This glassy film exhibits excellent X-ray imaging ability with a spatial resolution as high as 27.0 lp mm−1 at MTF = 0.20, which is one of the best results among reported organic scintillators. The results of this work not only develop a new design strategy for high-performance organic scintillators but also demonstrate a reliable approach to fabricating large area screens with superior spatial resolution for medical or industrial X-ray imaging applications. © 2024 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Advanced Optical Materials
Year: 2024
Issue: 18
Volume: 12
8 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: