Abstract:
针对传统手工制作脑电(EEG)信号特征所带来的性能较差问题,提出了一种基于深度学习的脑电特征检测方法。采用EEG片段分割和带通滤波作为数据预处理方法,并结合卷积神经网络与Transformer自动地提取脑电信号特征,进而利用10折交叉验证训练模型以评估其有效性。同时以CHB-MIT数据集对所提出的方法进行验证,得到了该方法对癫痫脑电信号的分类平均准确率为98.51%,平均灵敏度为98.13%,平均特异性则为98.93%。实验结果表明,所提方法避免了繁琐的特征提取过程,能够有效完成脑电信号的自动检测及分类任务。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电子设计工程
Year: 2024
Issue: 15
Volume: 32
Page: 156-160
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: