Indexed by:
Abstract:
Photocatalytic ozonation emerges as an appealing approach for wastewater purification. However, the kinetic constraints associated with the charge separation and the ozone activation hinder the advancement of photocatalytic ozonation systems. Herein, we prepared CeO2 photocatalysts with predominantly exposed {1 1 0}, {1 0 0}, or {1 1 1} facets, highlighting the synergy role of crystal facet and oxygen vacancies in manipulating electron transfer and ozone activation. The CeO2-{1 1 0} catalyst exhibits the best efficiency for phenol mineralization (69%) in photocatalytic ozonation. Ex-situ, Quasi-situ, and In-situ characterization of the CeO2 catalysts reveal that facet engineering in the CeO2 catalysts optimizes the electronic properties of the catalysts, thereby enhancing the separation of photogenerated charge carriers and transfer of electrons and holes, which provides more electrons for O3 activation and promotes the formation of reactive oxygen species (ROS). Moreover, facet modulating leads to a change in the density of surface oxygen vacancies. The increased oxygen vacancy density on the CeO2-{1 1 0} surface accelerates the activation of O3 and the formation of adsorbed oxygen (*O), synergistically boosting the production rate of ROS. The present study offers valuable insights into the design of efficient photocatalysts for wastewater purification. © 2024 Elsevier Inc.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Catalysis
ISSN: 0021-9517
Year: 2024
Volume: 438
6 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: