Indexed by:
Abstract:
Mainly owing to their well-defined pore structures and high surface areas, metal-organic frameworks (MOFs) have recently become a versatile class of materials for enzyme immobilization. Nevertheless, most previous studies were focused on model enzymes such as cytochrome c, catalase, and glucose oxidase, with the application of MOF-derived biocomposites for (asymmetric) organic synthesis being rare. In the present work, the immobilization of the ketoreductase KmCR2 onto the zeolitic imidazolate framework (ZIF), a prominent type of MOF, was pursued using the controlled co-precipitation strategy, with a low 2-methylimidazole (2-mIM)/Zn molar ratio of 8 : 1 being employed. Such fabricated biocomposites denoted as KmCR2@ZIF were found to exist mainly in an amorphous phase, as suggested by the scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) data. Improved thermal and storage stabilities were observed for KmCR2@ZIF compared with the free enzyme. Stereoselective reduction of nine diarylmethanones 1 catalyzed by KmCR2@ZIF was performed, and the corresponding enantioenriched diarylmethanols 2 were afforded in 40-92% conversions with good to excellent optical purities (up to >99% ee). Critically, the current work demonstrated that the unique characteristic of KmCR2, namely the substituent position-controlled stereospecificity (meta versus para or ortho), was not altered upon the enzyme immobilization onto the ZIF.
Keyword:
Reprint 's Address:
Version:
Source :
ORGANIC & BIOMOLECULAR CHEMISTRY
ISSN: 1477-0520
Year: 2024
Issue: 25
Volume: 22
Page: 5198-5204
2 . 9 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: