Indexed by:
Abstract:
Adsorption and activation of C-H bonds by photocatalysts are crucial for the efficient conversion of C-H bonds to produce high-value chemicals. Nevertheless, the delivery of surface-active oxygen species for C-H bond oxygenation inevitably needs to overcome obstacles due to the separated active centers, which suppresses the catalytic efficiency. Herein, Ni dopants are introduced into a monolayer Bi2WO6 to create cascaded active units consisting of unsaturated W atoms and Bi/O frustrated Lewis pairs. Experimental characterizations and density functional theory calculations reveal that these special sites can establish an efficient and controllable C-H bond oxidation process. The activated oxygen species on unsaturated W are readily transferred to the Bi/O sites for C-H bond oxygenation. The catalyst with a Ni mass fraction of 1.8% exhibits excellent toluene conversion rates and high selectivity towards benzaldehyde. This study presents a fascinating strategy for toluene oxidation through the design of efficient cascaded active units.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NATURE COMMUNICATIONS
Year: 2024
Issue: 1
Volume: 15
1 4 . 7 0 0
JCR@2023
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 30
SCOPUS Cited Count: 26
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: