• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Luo, Shun (Luo, Shun.) [1] | Yu, Juan (Yu, Juan.) [2] (Scholars:于娟) | Xi, Yunjiang (Xi, Yunjiang.) [3]

Indexed by:

EI Scopus SCIE

Abstract:

Documents contain abundant information available for managerial decision-making. However, manual methods of screening document information lack accuracy due to the heterogeneity of documents. To address the above issue, we propose a multimodal network combining multivariate semantic association graphs, MMIE, for accurately extracting information from documents. Firstly, the multivariate semantic graphs between multimodal data within each modality are constructed based on the semantic association of text contents, followed by the semantic relationships in the graphs to lead the fusion and embedding of the extracted multimodal data and improve the feature representation capability. Subsequently, the semantically linked multimodal information is fed into the newly constructed multimodal self-attention module to better establish inter-modal associations. Finally, a supervised comparison learning loss function is employed to reduce further the information loss due to sample imbalance. The experimental results on three real datasets show that the proposed model can extract feature information of different modal data more accurately, and the F1 scores reach 87.28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 82.53%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and 81.17%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} , respectively.

Keyword:

Deep learning Document information extraction Multimodal fusion Multivariate semantic association

Community:

  • [ 1 ] [Luo, Shun]Fuzhou Univ, Sch Econ & Management, Fuzhou 350108, Fujian, Peoples R China
  • [ 2 ] [Yu, Juan]Fuzhou Univ, Sch Econ & Management, Fuzhou 350108, Fujian, Peoples R China
  • [ 3 ] [Xi, Yunjiang]South China Univ Technol, Sch Business Adm, Guangzhou 510641, Guangdong, Peoples R China

Reprint 's Address:

  • [Yu, Juan]Fuzhou Univ, Sch Econ & Management, Fuzhou 350108, Fujian, Peoples R China;;

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF SUPERCOMPUTING

ISSN: 0920-8542

Year: 2024

Issue: 13

Volume: 80

Page: 18705-18727

2 . 5 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:182/10046336
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1