Indexed by:
Abstract:
Image splicing forgery, that is, copying some parts of an image into another image, is one of the frequently used tampering methods in image forgery. As a research hotspot in recent years, deep learning has been used in image forgery detection. However, current deep learning methods have two drawbacks: first, they are too simple in feature fusion; second, they rely only on a single cross-entropy loss as the loss function, leading to models prone to overfitting. To address these issues, a image splicing forgery localization method based on multi-scale supervised U-shaped network, named MSU-Net, is proposed in this paper. First, a triple-stream feature extraction module is designed, which combines the noise view and edge information of the input image to extract semantic-related and semantic-agnostic features. Second, a feature hierarchical fusion mechanism is proposed that introduces a channel attention mechanism layer by layer to perceive multi-level manipulation trajectories, avoiding the loss of information in semantic-related and semantic-agnostic shallow features during the convolution process. Finally, a strategy for multi-scale supervision is developed, a boundary artifact localization module is designed to compute the edge loss, and a contrastive learning module is introduced to compute the contrastive loss. Through extensive experiments on several public datasets, MSU-Net demonstrates high accuracy in localizing tampered regions and outperforms state-of-the-art methods. Additional attack experiments show that MSU-Net exhibits good robustness against Gaussian blur, Gaussian noise, and JPEG compression attacks. Besides, MSU-Net is superior in terms of model complexity and localization speed.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
PATTERN ANALYSIS AND APPLICATIONS
ISSN: 1433-7541
Year: 2024
Issue: 3
Volume: 27
3 . 7 0 0
JCR@2023
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: