Indexed by:
Abstract:
The potential of the Al-F reaction in suppressing agglomeration during propellant combustion and enhancing combustion performance is investigated by introducing fluorinated graphene as a fluorinated oxidizer. Comparative analyses of ignition combustion and agglomeration behaviors are conducted on novel composite powders and propellant samples modified with varying contents of fluorinated graphene using laser and hot wire ignition visualization systems. Characterizing parameters such as characteristic spectra, flame grayscale, ignition delay time, combustion duration, and burning rate are measured during combustion at different pressures. Additionally, agglomerated particles are collected via quenching techniques under 7 MPa pressure to explore the influence mechanism of fluorinated graphene on agglomeration near the burning surface, and a comprehensive influence mechanism is proposed. Results indicate that fluorinated graphene promotes ammonium perchlorate decomposition, accelerates oxidizing gas release, and enhances thermal conduction at the burning surface. The reaction between Al and F decreases the formation of intermediates (AlO and Al2O), while the interaction of F with Al and Al2O3 effectively inhibits the clustering of Al particles, replacing conventional oxidation reactions and resulting in a unique micro-explosion jetting phenomenon. The introduction of 15 % fluorinated graphene concentrates most product particles around 10 mu m, enhancing energy release during combustion. Overall, this composite powder containing fluorinated graphene effectively improves the combustion performance of aluminum-containing composite propellants, inhibiting Al particle agglomeration and potentially reducing specific impulse loss in solid rocket motors.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACTA ASTRONAUTICA
ISSN: 0094-5765
Year: 2024
Volume: 225
Page: 489-502
3 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: