Indexed by:
Abstract:
High-efficiency reduction of Fe3O4 particles in molten copper slag is the key for recovering slag-entrained copper, although restrained by the sluggish reaction kinetics of commercial powdery reductants with low density. Here, a new strategy by density tuning in conjunction with pelletizing of the powdery reductants is suggested, greatly enhancing the Fe3O4 reduction kinetics and resulting in remarkably facilitating the recovery of slag-entrained copper. Specifically, by replacing the industrially used coal powder with FeS2-C pellets at optimized density, the efficiency of Fe3O4 reduction is significantly increased from 18% to 51%, with the copper content in the low-layer slag being correspondingly enriched from 1.37% to 4.53%. The SEM-EDS characterizations and finite element analytical results all reveal that the enhanced reduction of Fe3O4 by the as-designed reductant contributes to the decrease of slag viscosity and copper exposure, as well as to the size growth of copper matte droplets, resulting in promoted settling of copper-containing components for copper-slag separation in the molten state. Additionally, the full exposure and size growth of copper matte in the molten state facilitate copper reclamation during the subsequent grinding-flotation process of the solidified slag, which increases the copper recovery from 23.3% to 85.3%, with the concentrate grade being correspondingly improved from 2.8% to 6.45% after one-stage flotation. The results can provide new insights into enhancing the recovery of slag-entrained copper.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOM
ISSN: 1047-4838
Year: 2024
Issue: 9
Volume: 76
Page: 4837-4848
2 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1