• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Qin, Jianyu (Qin, Jianyu.) [1] | Zhao, Mengyue (Zhao, Mengyue.) [2] | Zhang, Yanfeng (Zhang, Yanfeng.) [3] | Shen, Jinni (Shen, Jinni.) [4] (Scholars:沈锦妮) | Wang, Xuxu (Wang, Xuxu.) [5] (Scholars:王绪绪)

Indexed by:

EI Scopus SCIE

Abstract:

Low-mass interfacial contacts and poor charge transfer efficiency severely limit the CO2 photoreduction performance of semiconductor heterojunctions. In this work, g-C3N4/Ag@Ag3PO4 S-scheme heterojunction is prepared by an in-situ growth method. The main product for CO2 photoreduction is CO with the selectivity of 97 %. The evolution rate of CO for optimal g-C3N4/Ag@Ag3PO4 heterojunction is 123.8 mu mol g- 1 h-1, which are 8.3and 3.4-fold higher than those of pristine Ag3PO4 and g-C3N4, respectively. It is found that Ag3PO4, Ag, and gC3N4 form strong interacting interfacial structure, in which Ag3PO4 links with Ag nanoparticles through tandem Ohmic contact. More importantly, sigma bonds are formed via hybridization of px orbital for C and N with dx2-y2 orbitals of Ag in g-C3N4/Ag@Ag3PO4 S-scheme heterojunction, establishing an atomic-level dx2-y2(Ag)-px(C,N) charge flow highway. This work provides new viewpoints into the design of heterojunction photocatalysts with high-quality interfaces and highlights the insights of charge transfer behavior in regulating the catalytic activity.

Keyword:

Charge transfer channel CO 2 photoreduction Interface S-scheme

Community:

  • [ 1 ] [Qin, Jianyu]Hebei Normal Univ, Coll Chem & Mat Sci, Natl Demonstrat Ctr Expt Chem Educ, Hebei Key Lab Inorgan Nanomat, Shijiazhuang 050024, Peoples R China
  • [ 2 ] [Zhao, Mengyue]Hebei Normal Univ, Coll Chem & Mat Sci, Natl Demonstrat Ctr Expt Chem Educ, Hebei Key Lab Inorgan Nanomat, Shijiazhuang 050024, Peoples R China
  • [ 3 ] [Zhang, Yanfeng]Hebei Normal Univ, Coll Chem & Mat Sci, Natl Demonstrat Ctr Expt Chem Educ, Hebei Key Lab Inorgan Nanomat, Shijiazhuang 050024, Peoples R China
  • [ 4 ] [Shen, Jinni]Fuzhou Univ, Res Inst Photocatalysis, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
  • [ 5 ] [Wang, Xuxu]Fuzhou Univ, Res Inst Photocatalysis, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China

Reprint 's Address:

  • [Zhang, Yanfeng]Hebei Normal Univ, Coll Chem & Mat Sci, Natl Demonstrat Ctr Expt Chem Educ, Hebei Key Lab Inorgan Nanomat, Shijiazhuang 050024, Peoples R China;;[Shen, Jinni]Fuzhou Univ, Res Inst Photocatalysis, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China;;

Show more details

Related Keywords:

Source :

SEPARATION AND PURIFICATION TECHNOLOGY

ISSN: 1383-5866

Year: 2024

Volume: 353

8 . 2 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:138/10046339
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1