Indexed by:
Abstract:
Ultra-high resolution image segmentation has raised increasing interests in recent years due to its realistic applications. In this paper, we innovate the widely used high-resolution image segmentation pipeline, in which an ultra-high resolution image is partitioned into regular patches for local segmentation and then the local results are merged into a high-resolution semantic mask. In particular, we introduce a novel locality-aware context fusion based segmentation model to process local patches, where the relevance between local patch and its various contexts are jointly and complementarily utilized to handle the semantic regions with large variations. Additionally, we present the alternating local enhancement module that restricts the negative impact of redundant information introduced from the contexts, and thus is endowed with the ability of fixing the locality-aware features to produce refined results. Furthermore, in comprehensive experiments, we demonstrate that our model outperforms other state-of-the-art methods in public benchmarks and verify the effectiveness of the proposed modules. Our released codes will be available at: https://github.com/liqiokkk/FCtL. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Keyword:
Reprint 's Address:
Email:
Source :
International Journal of Computer Vision
ISSN: 0920-5691
Year: 2024
Issue: 11
Volume: 132
Page: 5030-5047
1 1 . 6 0 0
JCR@2023
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: