• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhao, Jia (Zhao, Jia.) [1] | Lin, Sen (Lin, Sen.) [2] (Scholars:林森)

Indexed by:

EI Scopus SCIE

Abstract:

The electrocatalytic CO2 reduction reaction (CO2RR) is one of the most important electrocatalytic reactions. Starting from a well-defined *CO intermediate, the CO2RR can bifurcate into two pathways, either forming a hydrogenation product by * C O bond hydrogenation or leading to CO desorption by * C bond cleavage. However, it is perplexing why many dual-atom catalysts (DACs) exhibit high CO selectivity in experiments, despite previous theoretical studies arguing that the * C O bond hydrogenation is thermodynamically more favorable than the * C bond breaking. Furthermore, the selectivity is contingent upon the potential and is perturbed by the hydrogen evolution reaction (HER), which is far from clear. Using ab initio molecular dynamics and a "slow-growth" sampling method to evaluate the potential-dependent kinetics, we uncover the selectivity origin of CO2RR to CO on a typical NC-based DAC (CuFe-N6-C). Importantly, the results show that at higher CO* coverage, CO* desorption kinetics are accelerated, while the competing * C O bond hydrogenation reaction is inhibited at varying potentials. Furthermore, the selectivity of the HER is observed to increase as the potential decreases. However, at higher CO* coverage, the energy barrier for the * C bond cleavage is lower than that for HER, suggesting that HER is suppressed on CuFe-N6-C. Our work unlocks a long-standing puzzle about the selectivity of important DAC catalysts for CO2RR and provides insights for more effective catalyst design.

Keyword:

Ab initio molecular dynamics Dual-atom catalyst Electrocatalytic CO 2 reduction Potential-dependent kinetics Selectivity

Community:

  • [ 1 ] [Zhao, Jia]Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China
  • [ 2 ] [Lin, Sen]Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China

Reprint 's Address:

  • 林森

    [Lin, Sen]Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF COLLOID AND INTERFACE SCIENCE

ISSN: 0021-9797

Year: 2024

Volume: 680

Page: 257-264

9 . 4 0 0

JCR@2023

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:146/10042015
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1