Indexed by:
Abstract:
With the popularity of blockchains, low transaction throughput has become a significant bottleneck in applications such as cryptocurrencies. Payment channel networks (PCNs) have received attention as a way to improve throughput. However, due to the difficulty of predicting future transactions for nodes, the transactions are prone to failure when the channel balances do not meet required conditions. It has been shown that increasing buffers (queues) in PCNs can increase the success rate of transactions and throughput. Nevertheless, there is no effective transaction scheduling strategy in buffers when transaction values are flexible and variable. To solve this problem, we first formulate the Scheduling Problem in PCNs (named PSP), and then prove it is NP-hard. We design a neural network solver based on the Sequence to Sequence (Seq2Seq) architecture and train the solver using the reinforcement learning method. With the solver, we first give two scheduling strategies to maximize transaction throughput, and then design a PCN simulator for performance evaluation. Extensive experiments are conducted to show the superiority and various performances of our proposal and illustrate that our proposal can get a significant advantage in terms of the transaction throughput compared to the existing works.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE-ACM TRANSACTIONS ON NETWORKING
ISSN: 1063-6692
Year: 2024
Issue: 2
Volume: 33
Page: 570-582
3 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0