Indexed by:
Abstract:
Accurately predicting truck origin–destination (OD) flows is essential for optimizing logistics systems and promoting coordinated regional development. Existing methods typically assume a monotonic decrease in truck OD flows with increasing geospatial distance, which oversimplifies the complex non-monotonic distribution patterns observed in practice. Moreover, these methods overlook interregional socioeconomic distances and their interaction with geospatial distances, thereby limiting the prediction accuracy and reliability. This study introduces a gravity-inspired model that integrates both geospatial and socioeconomic distances (GSD-DG) to explicitly represent their combined influence on truck OD flows. Specifically, we 1) develop a geospatial distance relation graph using the Weibull function to model the complex spatial distribution patterns of truck OD flows with varying geospatial distances; 2) propose a gravity-inspired representation learning method based on graph attention mechanism to quantify the influence of socioeconomic distance on truck OD flows; and 3) construct a deep gravity model that integrates these distances and their interactions to capture their non-linear relationship with truck OD flows. Extensive experiments on four datasets with varying spatial scale and economic development levels demonstrate that the GSD-DG model improves the robustness and prediction accuracy across diverse spatial distribution patterns, reducing RMSE by 14.2%–85.8% and MSE by 23.5%–92.5% compared to the six baseline models. Incorporating socioeconomic distance and its interaction with geospatial distance further reduces RMSE by 8.5%–36.0%. Additionally, explainable artificial intelligence techniques highlight how these distances affect truck OD flows, providing valuable policy insights for logistics planning and coordinated regional development. © 2024 The Authors
Keyword:
Reprint 's Address:
Email:
Source :
International Journal of Applied Earth Observation and Geoinformation
ISSN: 1569-8432
Year: 2025
Volume: 136
7 . 6 0 0
JCR@2023
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: