Indexed by:
Abstract:
Transition metal sulfides as anode materials for sodium-ion batteries (SIBs) have the advantage of high capacity. However, their cycle-life and rate performance at ultra-high current density is still a thorny issue that limit the applicability of these materials. In this paper, the carbon-embedded heterojunction with sulfur-vacancies regulated by ultrafine bimetallic sulfides (vacancy-CoS2/FeS2@C) with robust interfacial C-S-Co/Fe chemical bonds is successfully synthesized and explored as an anode material for sodium-ion battery. By changing the ratio of two metal cations, the concentration of anion sulfur vacancies can be in-situ adjusted without additional post-treatment. The as-prepared vacancy-CoS2/FeS2@C anode material offers ultrahigh rate performance (285.1 mAh g−1 at 200 A g−1), and excellent long-cycle stability (389.2 mAh g−1 at 40 A g−1 after 10000 cycles), outperforming all reported transition metal sulfides-based anode materials for SIBs. Both in-situ and ex-situ characterizations provide strong evidence for the evolution mechanism of the phases and stable solid-electrolyte interface (SEI) on the vacancy-CoS2/FeS2@C surface. The density functional theory calculations show that constructing heterojunction with reasonable concentration of vacancies can significantly increase the anode electronic conductivity. Notably, the assembled vacancy-CoS2/FeS2@C//Na3V2(PO4)3/C full-cell shows a capacity of 226.2 mAh g−1 after 400 cycles at 2.0 A g−1, confirming this material's practicability. © 2024 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Advanced Functional Materials
ISSN: 1616-301X
Year: 2025
Issue: 1
Volume: 35
1 8 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: