Indexed by:
Abstract:
Energy maximising (EM) control of wave energy converters (WECs) is a noncausal problem, where wave prediction information can be used to increase the energy conversion rate significantly. However, current approaches do not consider the prediction error evolution in the control formulation process, leading to potential unpredictable performance degradation. Moreover, most existing real-time WEC control approaches assume linear dynamics, motivated by their simplicity and mild computational cost and, thus, are not effective for real-time control for WECs with nonlinear dynamics. Targeting imperfect wave prediction and nonlinear WEC dynamics, this paper proposes a computationally-efficient nonlinear MPC (NMPC) scheme for WECs with (typically) imperfect wave excitation preview. This is achieved by introducing an input move blocking scheme when formulating and solving the online optimisation problem, i.e., defining finer discretisation grids for the control input and wave prediction at the early stages of the prediction horizon, where the wave prediction is more accurate, and coarser grids at the latter stages of the horizon, to reflect less inaccurate wave prediction information. Numerical simulation results are presented, based on a conceptual nonlinear point-absorber WEC, to verify the efficacy of the proposed NMPC method, in terms of produced energy, computational complexity, and robustness against wave prediction inaccuracy. © 2024
Keyword:
Reprint 's Address:
Email:
Source :
Ocean Engineering
ISSN: 0029-8018
Year: 2025
Volume: 319
4 . 6 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: