Indexed by:
Abstract:
Cooperatively integrating CO2 reduction half-reaction with selective organic oxidation half-reaction presents an attractive opportunity to simultaneously utilize photogenerated holes and electrons to realize carbon neutrality and the production of value-added chemicals. Herein, we report the cooperative photoredox catalysis of tunable and efficient CO2 reduction to syngas paired with 4-methoxythiophenol (4-MTP) oxidation to bis(4methoxyphenyl) disulfide (4-MPD) over hybrid CdSe/CdS quantum dots (QDs). The strategy of constructing CdSe/CdS composites not only facilitates the efficiency of photoinduced carrier separation and transfer, improving the photoredox activity of two half-reactions, but also enhances CO2 activation, modulating the syngas CO/H2 ratio varying from 1:4-5:4. Mechanistic studies have revealed that 4-MTP is oxidized by holes located in CdS to generate hydrogen protons and sulfur-centered radicals, and then these radicals pair with each other to form 4-MPD with high selectivity, while the electrons in CdSe interact with protons and CO2 for syngas production. Furthermore, the feasibility of applying CdSe/CdS QDs to the cooperative photoredox catalysis of thiols with different substituents integrated with CO2 into corresponding disulfides and syngas has been demonstrated. This work envisages the development of QDs-based heterostructure catalysts for highly efficient photocatalytic co-production of syngas and value-added organic chemicals.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY
ISSN: 0926-3373
Year: 2025
Volume: 367
2 0 . 3 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: