• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Shi, Songchang (Shi, Songchang.) [1] | Zhang, Lihui (Zhang, Lihui.) [2] | Zhang, Shujuan (Zhang, Shujuan.) [3] | Shi, Jinyang (Shi, Jinyang.) [4] | Hong, Donghuang (Hong, Donghuang.) [5] | Wu, Siqi (Wu, Siqi.) [6] | Pan, Xiaobin (Pan, Xiaobin.) [7] | Lin, Wei (Lin, Wei.) [8]

Indexed by:

SCIE

Abstract:

ObjectivesTo develop a machine learning-based prediction model using clinical data from the first 24 h of ICU admission to enable rapid screening and early intervention for sepsis patients.MethodsThis multicenter retrospective cohort study analyzed electronic medical records of sepsis patients using machine learning methods. We evaluated model performance in predicting sepsis outcomes within the first 24 h of ICU admission across US and Chinese healthcare settings.ResultsFrom 31 clinical features, machine learning models demonstrated significantly better predictive performance than traditional approaches for sepsis outcomes. While linear regression achieved low test scores (0.25), machine learning methods reached scores of 0.78 and AUCs above 0.8 in testing. Importantly, these models maintained robust performance (scores 0.63-0.77) in external validation.ConclusionsThe application of machine learning-based prediction models for sepsis could significantly improve patient outcomes through early detection and timely intervention in the critical first 24 h of ICU admission, supporting clinical decision-making.

Keyword:

Machine learning Mortality Prediction Sepsis Visualization

Community:

  • [ 1 ] [Shi, Songchang]Fuzhou Univ, Fujian Med Univ, Shengli Clin Med Coll, Fujian Prov Hosp,South Branch,Affiliated Prov Hosp, Fuzhou 350001, Peoples R China
  • [ 2 ] [Zhang, Lihui]Fuzhou Univ, Fujian Med Univ, Shengli Clin Med Coll, Fujian Prov Hosp,South Branch,Affiliated Prov Hosp, Fuzhou 350001, Peoples R China
  • [ 3 ] [Zhang, Shujuan]Fuzhou Univ, Fujian Med Univ, Shengli Clin Med Coll, Fujian Prov Hosp,South Branch,Affiliated Prov Hosp, Fuzhou 350001, Peoples R China
  • [ 4 ] [Pan, Xiaobin]Fuzhou Univ, Fujian Med Univ, Shengli Clin Med Coll, Fujian Prov Hosp,South Branch,Affiliated Prov Hosp, Fuzhou 350001, Peoples R China
  • [ 5 ] [Lin, Wei]Fuzhou Univ, Fujian Med Univ, Fujian Prov Hosp, Dept Endocrinol,Shengli Clin Med Coll,Affiliated P, Fuzhou 350001, Fujian, Peoples R China
  • [ 6 ] [Hong, Donghuang]Fuzhou Univ, Fujian Med Univ, Fujian Prov Hosp, Dept Crit Care Med,Shengli Clin Med Coll,Affiliate, Fuzhou 350001, Peoples R China
  • [ 7 ] [Shi, Jinyang]Fujian Med Univ, Fuzhou 350001, Peoples R China
  • [ 8 ] [Wu, Siqi]Fuzhou Univ, Fujian Med Univ, Fujian Prov Hosp, Affiliated Prov Hosp,Shengli Clin Med Coll, Fuzhou 350001, Peoples R China

Reprint 's Address:

  • 待查

    [Lin, Wei]Fuzhou Univ, Fujian Med Univ, Fujian Prov Hosp, Dept Endocrinol,Shengli Clin Med Coll,Affiliated P, Fuzhou 350001, Fujian, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF TRANSLATIONAL MEDICINE

Year: 2025

Issue: 1

Volume: 23

6 . 1 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:154/10060654
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1