• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Yan, Xian (Yan, Xian.) [1] | Zheng, Bing-Xiong (Zheng, Bing-Xiong.) [2] | Zhu, Jun-Rong (Zhu, Jun-Rong.) [3] | Li, Yu-Bing (Li, Yu-Bing.) [4] | Xiao, Fang-Xing (Xiao, Fang-Xing.) [5] (Scholars:肖方兴)

Indexed by:

EI Scopus SCIE

Abstract:

Atomically precise metal nanoclusters (NCs) emerge as a novel class of photosensitizers, distinguished by their discrete energy band structures and abundance of catalytically active sites; however, their broader adoption in heterogeneous photocatalysis remains hindered by the challenges of ultrashort carrier lifetimes, limited stability, and the complexity of charge transport regulation. In this work, we conceptually design the metal NCs photosensitized and graphene (GR)-encapsulated transition metal chalcogenide (TMC) (GR/metal NCs/TMCs) heterostructure via a cascade electrostatic self-assembly strategy. In this multilayer ternary heterostructure, metal NCs are integrated between TMCs and GR nanosheets, which act as photosensitizers for enhancing the light absorption of TMCs and meanwhile increase the carrier density of composite photosystem. The favorable interfacial charge transport between metal NCs and TMCs along with the advantageous electron-withdrawing capability of GR simultaneously boosts charge separation over metal NCs. Benefiting from such peculiar carrier transport characteristics, the self-assembled GR/metal NCs/TMCs heterostructure demonstrates remarkably boosted and stable photoactivities toward selective photoredox organic transformation, including photocatalytic anaerobic reduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light. Furthermore, the mechanisms underlying the photocatalytic processes are elucidated with clarity. Our work affords a quintessential paradigm for customizing atomically precise metal NCs in engineered photosystems aimed at converting solar energy into chemical energy.

Keyword:

Community:

  • [ 1 ] [Yan, Xian]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 2 ] [Zheng, Bing-Xiong]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 3 ] [Zhu, Jun-Rong]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 4 ] [Xiao, Fang-Xing]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 5 ] [Li, Yu-Bing]Kunming Univ Sci & Technol, Fac Chem Engn, Kunming 650500, Peoples R China
  • [ 6 ] [Xiao, Fang-Xing]Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Fujian, Peoples R China

Reprint 's Address:

  • 肖方兴

    [Xiao, Fang-Xing]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China;;[Li, Yu-Bing]Kunming Univ Sci & Technol, Fac Chem Engn, Kunming 650500, Peoples R China;;[Xiao, Fang-Xing]Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Fujian, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

INORGANIC CHEMISTRY

ISSN: 0020-1669

Year: 2025

Issue: 7

Volume: 64

Page: 3572-3581

4 . 3 0 0

JCR@2023

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:414/10035505
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1