• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Chi, Gaojie (Chi, Gaojie.) [1] | Guo, Longkun (Guo, Longkun.) [2] (Scholars:郭龙坤) | Jia, Chaoqi (Jia, Chaoqi.) [3]

Indexed by:

EI Scopus SCIE

Abstract:

Given a radius R is an element of Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\in \mathbb {Z}<^>+$$\end{document} and a set X of n points distributed within a metric space, we consider the radius-constrained k-median problem, which combines both the k-center and k-median clustering problems. In this problem, the objective is the same as that of the k-median problem, with the additional constraint that every point x in X must be assigned to a center within the given radius R. This paper proposes an approximation algorithm that achieves a bicriteria approximation ratio of (3+epsilon,7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+\varepsilon , 7)$$\end{document} by incorporating local search with a key ball structure. The algorithm constructs a keyball center set to ensure coverage of the points and iteratively refines the solution through subset swaps while satisfying feasibility conditions. Thus, this process maintains coverage while reducing costs. Compared to the state-of-the-art approximation ratio of (8, 4) based on a linear programming formulation for this problem, our approach improves the k-median ratio from 8 to 3+epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+\varepsilon $$\end{document}, at the cost of increasing the radius ratio from 4 to 7.

Keyword:

Approximation algorithm k-center k-median Local search

Community:

  • [ 1 ] [Chi, Gaojie]Guangdong Univ Technol, Sch Integrated Circuits, Guangzhou, Peoples R China
  • [ 2 ] [Guo, Longkun]Guangdong Univ Technol, Sch Integrated Circuits, Guangzhou, Peoples R China
  • [ 3 ] [Chi, Gaojie]Fuzhou Univ, Sch Math & Stat, Fuzhou 350116, Peoples R China
  • [ 4 ] [Guo, Longkun]Fuzhou Univ, Sch Math & Stat, Fuzhou 350116, Peoples R China
  • [ 5 ] [Jia, Chaoqi]RMIT Univ, Sch Accounting Informat Syst & Supply Chain, Melbourne, Vic 3000, Australia

Reprint 's Address:

  • 郭龙坤

    [Guo, Longkun]Guangdong Univ Technol, Sch Integrated Circuits, Guangzhou, Peoples R China;;[Guo, Longkun]Fuzhou Univ, Sch Math & Stat, Fuzhou 350116, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

THEORY OF COMPUTING SYSTEMS

ISSN: 1432-4350

Year: 2025

Issue: 1

Volume: 69

0 . 6 0 0

JCR@2023

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:404/10842397
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1