Indexed by:
Abstract:
Kinetic factors frequently emerge as the primary constraints in photocatalysis, exerting a critical influence on the efficacy of polymeric photocatalysts. The diverse conjugation systems within covalent organic frameworks (COFs) can significantly impact photon absorption, energy level structures, charge separation and migration kinetics. Consequently, these limitations often manifest as unsatisfactory kinetic behavior, which adversely affects the photocatalytic activity of COFs. To address these challenges, we propose a methoxy (−OMe) molecular engineering strategy designed to enhance charge carrier kinetics and mitigate mass transfer resistance. Through strategic modulation of the position and quantity of −OMe units, we can effectively manipulate the p-π conjugation, thereby enhancing charge separation and migration. Moreover, COFs enriched with −OMe moieties exhibit enhanced mass transfer dynamics due to the hydrophilic nature of methoxy groups, which facilitate the diffusion of reactants and products within the porous structure. This approach is hypothesized to drive an efficient photocatalytic hydrogen evolution reaction. © 2024 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Angewandte Chemie - International Edition
ISSN: 1433-7851
Year: 2025
Issue: 6
Volume: 64
1 6 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: