Indexed by:
Abstract:
For objects with arbitrary angles in optical remote sensing (RS) images, the oriented bounding box regression task often faces the problem of ambiguous boundaries between positive and negative samples. The statistical analysis of existing label assignment strategies reveals that anchors with low Intersection over Union (IoU) between ground truth (GT) may also accurately surround the GT after decoding. Therefore, this article proposes an attention-based mean-max balance assignment (AMMBA) strategy, which consists of two parts: mean-max balance assignment (MMBA) strategy and balance feature pyramid with attention (BFPA). MMBA employs the mean-max assignment (MMA) and balance assignment (BA) to dynamically calculate a positive threshold and adaptively match better positive samples for each GT for training. Meanwhile, to meet the need of MMBA for more accurate feature maps, we construct a BFPA module that integrates spatial and scale attention mechanisms to promote global information propagation. Combined with S2ANet, our AMMBA method can effectively achieve state-of-the-art performance, with a precision of 80.91% on the DOTA dataset in a simple plug-and-play fashion. Extensive experiments on three challenging optical RS image datasets (DOTA-v1.0, HRSC, and DIOR-R) further demonstrate the balance between precision and speed in single-stage object detectors. Our AMMBA has enough potential to assist all existing RS models in a simple way to achieve better detection performance. The code is available at https://github.com/promisekoloer/AMMBA. © 1980-2012 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE Transactions on Geoscience and Remote Sensing
ISSN: 0196-2892
Year: 2025
Volume: 63
7 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: