Indexed by:
Abstract:
Electrocatalytic CO reduction (COR) offers a promising alternative approach for synthesizing valuable chemicals, potentially at a lower carbon intensity as compared to conventional chemical production. Cu-based catalysts have shown encouraging selectivity and activity toward multi-carbon (C2+) products, albeit typically in the form of a mixture. Steering COR selectivity toward specific types of C2+ products, such as liquid products with high energy density, remains a challenge. In this study, we developed a Cu/Zn bimetallic catalyst composite and demonstrated enhanced selectivity toward liquid products as compared to reference CuO and Cu-based catalysts, approaching 60% at a high current density of 300 mA/cm2. Our investigation highlights that the introduction of Zn promoted the emergence of a Cu/Zn heterojunction interface during COR. Density functional theory simulations were used to rationalize the observed differences in selectivity, revealing that interface plays a crucial role in diminishing the oxygen adsorption at the Cu-sites and modifying the adsorption energy of COR reaction intermediates, consequently leading to enhanced selectivity toward liquid products. © 2025 The Author(s). SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SmartMat
ISSN: 2766-8525
Year: 2025
Issue: 2
Volume: 6
1 5 . 3 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: