Indexed by:
Abstract:
This review paper carefully examines ion-doped non-hydraulic calcium silicates' carbonation behavior and properties, notably gamma-C2S, C3S2, and CS, emerging as viable materials for sustainable construction applications. The carbonation process of these materials offers the combined benefits of increased durability and CO2 sequestration, providing a potential pathway to mitigate the environmental impact of conventional cement. Through foreign ion doping (e.g., barium, magnesium, and sodium), carbonation reactivity and compressive strength are significantly enhanced due to the formation of stable calcium carbonate polymorphs (such as calcite and aragonite) and densified matrices. Magnesium doping is noted for its efficacy, yielding a 40 % enhancement in carbonation reactivity and an increase of up to 115 MPa in compressive strength of gamma-C2S under optimal curing conditions. Key experimental parameters, such as CO2 concentration, temperature, and relative humidity, influence carbonation reactivity and are essential for the pilot-scale application of these materials in the construction industry. The review also discusses future research directions, including the potential for multi-dopant systems, AI-based curing optimization, and long-term durability studies under varied environmental conditions. This review provides a fundamental perspective on the current advances and challenges of using ion-doped nonhydraulic calcium silicates as sustainable binders in the construction sector.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF BUILDING ENGINEERING
Year: 2025
Volume: 105
6 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: